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Jack polynomials with prescribed symmetry and hole
propagator of spin Calogero—Sutherland model

Yusuke Katg and Takashi Yamamoto

Institut fir Theoretische Physik, Univeratt zu KoIn, Zulpicher strasse 77, D-50937,6k,
Germany

and

Department of Physics, Tohoku University, Sendai 980-77, Japan

Abstract. We study the hole propagator of the Calogero—Sutherland model with SU(2) internal
symmetry. We obtain the exact expression for arbitrary non-negative integer coupling parameter
B and prove the conjecture proposed by one of the authors. Our method is based on the theory
of the Jack polynomials with a prescribed symmetry.

1. Introduction

One of the goals in physics of interacting particle systems is to understand the dynamics. In
particular, dynamical properties in one-dimensional systems are anticipated to be intriguing,
because interaction effects are crucial and naive pictures based on perturbations lose their
validity. As a non-perturbative approach, conformal field theory is a powerful method
with which to study the low-energy physics of the Tomonaga-Luttinger liquid. Beyond the
conformal limit, on the other hand, integrable systems give us opportunities for analytical
study of dynamics. Among them, the Calogero—Sutherland (CS) model [1, 2] of particles
interacting with the two-body inverse square interaction provides the simplest example
of systems with non-trivial dynamics. For the spinless CS model, the density—density
correlation function [3—6], hole propagator [4, 5, 7] and particle propagator [8, 9] have been
obtained analytically.

The spinless CS model has a number of variants. One of them is the spin CS model
[10, 11]. This model describes particles with coordinateX = (X4,..., X,,) moving
along a circle of length. and with a spin withp possible values. The Hamiltonian of the
model is given by

. n 2 2 .

i=-3 w20 T i ®
i=1 i 1<i<j<n L t J

where g is a coupling parameter an8; is the spin-exchange operator. In this paper, we

take 8 to be a non-negative integer.

The spin CS model witlp = 2 is particularly relevant to condensed matter physics;
most one-dimensional systems are realized experimentally in electron systems and hence
we should take account of spin degrees of freedom of each particle. Furthermore, we can
regard the spin CS model with = 2 as a one-dimensional variant of a singlet fractional
quantum Hall (FQH) system; the ground state of (1) can be derived from the Halperin
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wavefunction [12] for the singlet FQH state by the restriction of particle coordinates on a
ring in a two-dimensional plane.

For the dynamics of the spin CS model with= 2, the expression for the hole part
of Green function has been proposed [13] relying on finite-size calculations. Subsequently
the dynamical density—density and spin—spin correlation functions have been derived by
Uglov [14] in an exact treatment. Since [14] appeared, however, exact derivations of the
hole propagator have still been missing. Recently, in [15], Dunkl has developed the theory
of the Jack polynomials with a prescribed symmetry; those polynomials are symmetric or
alternating with respect to the interchange of certain subsets of variables. Dunkl's results
allow us to derive ‘the binomial formula’, which is directly related to the matrix element
of the local field operator in the spin CS model.

The aim of this paper is to prove the earlier conjecture on the hole propagator [13]
utilizing Dunkl's results [15]. Though the method in this paper is also applicable to the
general SUp) case, we concentrate on the SU(2) case for simplicity.

Here we recall the conjecture in [13] on the hole propagator. In the thermodynamic
limit, the expression for the hole propagatGrr, t) is expected to be

B p1 B+l p1

G(r, 1) =C(/3)]_[/ it ]_[f dvi| F (u, v)[? expl=i(E (u, v)t — Q(u, v)r)]. @)
k=1/-1 1=17-1

Here c(B) is a constant factor and = (u1,...,ug), v = (vy,...,vg41) represent

normalized velocities of the quasiholes. In the expression {2)Q and E represent the
form factor, momentum and energy, respectively. The explicit forms of them are as follows.
The form factorF is given by

B p+1 .
Tk crep e — ) Tlycpcrepoa 0 — 0% TTE_y T ase — vp)?
]_[le(l - u]%)(lfgd)/z Hf:ll(l _ U]Z)(lfgd)/Z

wheregqg = (8+1)/(28+1) andg, = —B8/(28 +1). The momentun® and energyr are
given, respectively, by

Lo b &
0w v =" Y+ Y u) @
=1

k=1

700, 2 a 2 & 2
E(u,v) = ~(28+ D() (Zuk +sz>~ ®)
1 =1

k=

F(u,v) = 3)

Herepg = 2M /L is the mean density of particles. In what follows, we prove this conjecture
and show that the constantg) is given by

po Zﬁl F(B+1/8+D)
A28+ DT (B+2) 7 Tk/(2B+1D)?

whereTI'(z) is the gamma function. The physical implication of expressions (2)—(4) has
been discussed in [13, 16].

This paper is organized as follows. In section 2, we define the Jack polynomials with
a prescribed symmetry and discuss their basic properties. In particular, we derive the
binomial formula of the Jack polynomials with the prescribed symmetry using Dunkl’s
results. In section 3, we obtain the hole propagator for a finite number of particles using the
mathematical formulae presented in section 2 and present the derivation of expression (2).

c(B) =

(6)
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2. Jack polynomials with prescribed symmetry

In this section, we present mathematical results necessary to derive the expression for the
hole propagator. First, as a preliminary, we fix our notations. Second, we define the
non-symmetric Jack polynomials. Third, we define the Jack polynomials with a prescribed
symmetry in terms of the non-symmetric Jack polynomials. Fourth, we present the basic
formulae of the Jack polynomials with the prescribed symmetry: the norm, Cauchy formula,
and evaluation formula are discussed. Last, from the Cauchy and evaluation formulae, we
derive the binomial formula, which gives the matrix element of the local field operator in
the calculation of the hole propagator.

2.1. Notations

First of all, we fix notations (see [17-19]). For a fixed non-negative integefet
Ay ={n=M1,n02....0)|0 € Zso, 1 < i < n} be the set of all compositions with
length less than or equal 1o The weight|n| of a compositiony = (11, 172, ..., 1,) € A,
is defined by|n| = Y ,n;. The length/(n) of n is defined as the number of non-
zeron; in n. The set of all partitions with length less than or equaktis defined by

Af ={h=(1,22,..., %) € Ayl = 22 > -+ > 1, > 0}). The dominance ordex on
partitions is defined as follows: for, u € A, A < wif [A] = || and 5, A < 30y
forall k = 1,...,n. For a compositiom € A,, we denote byy™ the (unique) partition

which is a rearrangement of the compositipn Now we define a partial ordex on
compositions as follows: fov,n € A,, v < n if v© < ™ with dominance ordering on
partitions or ifv™ =yt and ¢, v, < Y4 forallk=1,...,n.

For a given compositiom = (1,72, ..., 1,) € A, and pairs of integers = (i, j)
satisfying 1< i < I(n) and 1< j < n;, we define the following quantities:

a(s)=mn —J (7)
a(s)=j-1 8
Is)y=#ke{l,....,i-Lj<m+1<n}+#Hkeli+1 ... ,n}lj<m<n) 9)
U's)=#ke(l,....i—Um=n)+#keli+1 ....n}n > ni}. (10)

Here, for a sefd, #A denotes the number of elements. In the above expressionsa’(s),
I(s) and!’(s) are called arm-, coarm-, leg-, and coleg-lengths, respectively. Furthermore,
for a compositiony € A, and a parametes, we define the following four quantities:

dy = [[(ta®) + D/B+ 1) + 1) (11)
sen

d) = [ [(a(s) + 1)/B +1(s) (12)
SEN

ey =[] &)+ /B +n—1(s) (13)

sen

¢, =@ ® +D/B+n—1's) - D. (14)

sen
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2.2. Non-symmetric Jack polynomials

Now we define the non-symmetric Jack polynomials [20, 21]. For this purpose, we define
the Cherednik—Dunkl operators [22, 23] as

Xi

. 9 i—1 n
di = xi— 1-ws
x8x5+ﬂ;x;—xk( sk)+'32 L

k=ir1 N

Xk

A —=si) +BA—-1D) (15)

for 1 <i < n. The operatos;; = (i, j) is the transposition which interchanges coordinates
x; andx; (s;; is called the coordinate exchange operator [24]). The opeiaisra mapping
in homogeneous polynomials of = (x3,...,x,). Furthermore, all the operatoﬁs?,»}
commute with each other, and hence these operators can be diagonalized simultaneously.
For a given compositiom, the non-symmetric Jack polynomial,(x; 1/8) is defined
as the|n|th order homogeneous polynomial satisfying the following two conditions.
(1) The polynomialE, (x; 1/8) has the form of

E,(x;1/B) =x"+ Z Copx” (16)
veEAp
v=<n

in terms of the monomials” = x;*, ..., x)".
(2) E,(x; 1/B) is a simultaneous eigenfunction dffor 1<i <n.
Here we remark on two important properties of the non-symmetric Jack polyndmial

One is the eigenvalue df, for d;, which is given by
ni=mn—BHke{l,....i —Lpe 2} +#Hk e i +1,....n}m > ni}). (7)
The other is the action of the transpositign=s, ;11 = (i,i + 1) on E,, [18, 19]
&GE,+(1— éiz)Esm ni > Nit+1
s;E, =1 E, ni =M1 (18)
&i E, + Es, Ni < MNi+1

where§; = B/(i; — 1;+1)- In particular, property (18) plays an important role in the proof
of the basic properties of the Jack polynomials with a prescribed symmetry.

2.3. Jack polynomials with prescribed symmetry

Next we define the Jack polynomials with a prescribed symmetry. For this purpose, we
introduce some notations. The intendak= [1, n] denotes{i € Z|1 < i < n} for a positive
integern. For an integem € I, we definel, = [1, m] andI; = [m+1, n]. In addition, we
introduce the notations;, = #I, (= m) andn; = #I,(= n —m). We consider the subgroup

Sy, x S,, of the symmetric grougs,, which leavedl, ..., n } and{n +1, ..., n} invariant.
Further we define\;' c A, as a set of ‘partial partitions’

AT ={u=(ut uh
= (Yoo g ) € Aglpty > o> o] > o>t (19)

Now we consider polynomials which are alternating under the actioss, ofx S,,
[15, 25]. We define the (alternating) Jack polynomial with the prescribed symmetry
K, (x; B) for w = (u*, u") € A} by the following two conditions.

(1) The polynomialk,, has the form of

Ky B)= Y ayEy(x;1/B) (20)

n=(n*.n")
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with the normalizationa, = 1. Here the sums ovey* and ' are taken on the whole
rearrangements qf' and ', respectively.

(2) Under the action of the transpositien the polynomialK,(x) is transformed as
siK,(x) ==K, (x) fori e I, \ {n;} or € I \ {n}. (Here, for a se!d and its subseB, we
denote byA\ B the complementary set df in A.)

From the above definition and (18), we can derive the recursion relation for the
coefficienta,

ds;n = _wan (21)
Ni — Ni+1
wherei € I} \ {n,} or € I+ \ {n}. From the alternating property & ,, we can also write as
puKu(x) =Y SgNo)oE,(x) (22)
aeS,w ><S,lT

where the symbol sgiw) denotes the sign of the permutation The expression for the
factor p, can be obtained from the normalizatiop = 1 and relation (18) as

p=T1] Hw (23)

s=hpigen T
i<j
for u e A},

2.4. Basic properties

Next we discuss the basic properties of the Jack polynomials with the prescribed symmetry.
The combinatorial norm, integral norm, Cauchy formula and evaluation formula are
discussed.

(a) Combinatorial norm: define the polynomidig,(x)},ca, by

Q(xly) = H(l—xy, - H(l—x,y,) P =" gy (24)
i,j=1 neA,
The (combinatorial) inner producs, e)¢ is then defined byg,, x")¢ = §,, [26]. The Jack
polynomials with the prescribed symmetry are orthogonal with respect to the inner product
)¢ [25]. Using the norm formulz(||E,7||,3)2 = (E,, E,)S = dy/d, for n € A, [19] and
the transformation properties (18) of the non-symmetric Jack polynomials, we can prove

ny'nl d,
IKLII9)? = (K, Ky)S = =1~ (25)
P dy
for e AL,
(b) Integral norm: for functiong (x) and g(x) in complex variables = (x1, ..., x,),
we define the inner producs, )° by the following formula:
(. 8)° H f Tf(X)g(X)IA(x)IZﬂ (26)
[xi|=1

Here A(x) = [[.je (x; —x;) is the VanderMonde determinant aptk) denotes the complex
i<j

conjugation ofg(x). The Jack polynomials with the prescribed symmetry are orthogonal
with respect to the inner produci, )° [25]. It is known [27] that
Fmp+1e,

(Ey Ep)2J(E,, Ey)S = TErlre (27)
n
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for n € A,. We note that the right-hand side of (27) dependsnothroughn*. Thus
relation (27) immediately leads to
'aB+21e
K, K)°/ (K, K,)¢ = —— -~ 28
(Ko K)o/ (K K FGTDe, (28)
As a result of (25) and (28), we obtain

(Kl. 2)22 KLaKLSZ 29
Kullo)® = (Ko Kl = = S D e (29)
for u e AT
(c) The Cauchy formula: for the coordinate= (x, ..., x,) and a fixed integem € I,
we definext = (x1,...,x,) andx® = (x,41,...,x,). The Cauchy formula for the Jack

polynomials with the prescrlbed symmetry is given by
[T J]@=xopt [JA=xn™ =nitngd Y UKD 2K (@)K () (30)

s=,1i,jels i,jel ueAd’
whereK, (x) = K, (x)/ (A A(xT)) with A(x*) = ]_[,/szx (x; —x;), (s =}, 1). The proof

of the Cauchy formula (30) is based on Cauchy’s formula for the non-symmetric polynomials
Qx|y) = Z,’eA”(HE,]Hn) 2E,(x)E,(y) [19] and Cauchy’s determinant identity (see also
[27]). The proof also requires transformation properties (18) and (21) together with those
for d, andd; [19].

(d) evaluation formula: using the evaluation formula for the non-symmetric Jack
polynomials E,(1,...,1) = e,/d, [19] and new skew operators [15], Dunkl obtained

the evaluation formnula for the Jack polynomials with the prescribed symimetry

- le, n
K,1,...,) =g Pl =L (31)
—— és dﬂ Pu
where
mo=[] [T@—-m-8 (32)
s=,1 iJels

l<j

for w € A}'. In (31), the compositiod € A}' is introduced as$ = s(nt, nt) = (8%, 81)
with st =m'—1,...,,0 ands"=n'—-1,...,1,0).

2.5. Binomial formula

In this section, we derive the binomial formula with the use of the Cauchy formula (30)
and evaluation formula (31). Faer € C, the binomial formula for the Jack polynomials
with the prescribed symmetry is given by

[TT]A-x)"" =" xu@Kux) (33)

s={.1 iel, e’
where
l—a)+m
ut = Dr T 34
Xu(a) ,8 (1 _ a)5+ d/ . ( )

1 The polynomialE, for a compositiory; in this paper is different frong, in [15] by the constant factof{?/d,,;
E, = (d)/dy)&.
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Here, for an indeterminate a partitioni and a paramete#, the generalized shifted factorial
is defined by

T - BG D+ )
“”‘E rA-pG-1)

We can prove the formula (33) in a way similar to that used in lemma 5.2 in [19] and
proposition 2.4 in [27].

Let n’ ben)| + n’ (> n) for that pair ¢, n}) of positive integers:| andn’, which
satisfies:| —ny = n, —ny. We consider the Cauchy formula (30)7ifivariables. First we
discuss the left-hand side; the left-hand side of (30) becomes

H l_[ A—xyp~t l_[ A—-xiy)~*? (36)

(35)

s=,1i,jell ijer
with 7} = [1,n/], I; =[n}, + L nTand I’ = [1,n']. Now we setx, i1 =--- = X = 0,
Xnjang41 = o0 = Xpqny = 0 andy; = --- = Yoy, = 1. Further we replace
(xnrﬁl, e xnrﬁ,”) by (xn, 41, ..., Xn, 1n,). Expression (36) then turns into
1_[ (l _ xi)fn'ﬁfnl 1_[ (1 _ xj)*n'ﬂ*"fr”i*”T ) (37)
iel =[1,n] jeli=[n,+1n]

Next we discuss the right-hand side of the Cauchy formula’invariables. We set
y; = 1 for 1 < i < n'. With the use of evaluation formula (31), we immediately see that
the right-hand side of the Cauchy formula becomes
SO, ). (38)

’
" e(ydu

Here the sum is taken overe A,f,T. The symbols’ = (§'V, §'") denotes the composition
8. ny) e Ayl

Now we setx, 41 = --- = x = 0 and Kbl = 0 = Xy, = 0 in
(38). Non-vanishing contributions the sum in (38) then only come from the compositions
v= (! e Ajf satisfying/ (vt — §") < ny, andl(v" — §'") < ny wherev® —§* =
(Vi =8%, ... vy =8y) € Aig' (s =|,1). The reason is as follows. If eithépt —§") > n,
or/(vt — 8" > n; holds for the compositiom = (v¥, v?) € A,f,T, then, in each monomial
of the polynomialsk’,, the minimum power of,, ;1 is 1 or that ofxnﬁ,,ﬁl is 1. Therefore,
thosev do not contribute to the sum in (38) when both 1 and Xu+ny+1 Are set to be
Zero.

For a composition = (v¥, v1) € AY! satisfyingl(v! —8'Y) < ny andI(v' —58") < ny,
the compositionu = (u¥, u') e A" can be defined as the composition satisfying the
relation

ut —8v =¥ — 8" and ut =8t =vt -5, (39)

When relation (39) holds for compositions € Ay' andv € A}, we can then find the
following consequences. First, the two polynomials

K,(x1,...,x,,,0,...,0, Xn 41 - - oy Xty 0,...,0 (40)
n—n, ny—ny
and

K;L(-xl’ ceesXny, xn’l-ﬁ—la ceey -xn'l-Hu) (41)
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are equal. From now on, we replaoaa/ﬁl,...,xn/ﬁnT by x,,4+1,...,x,. Second,
m,/d, = B~ ", /d),. Third, the expressiom, /es can be rewritten as

[T (@& +D/B+n" =) Tl (@) +n) —ny +1/B+n"—1(s))
[les (@) +D/B+n =) [les(@(s) +n), —ny +1)/B+n" —1(s))
A+n'B+ ni —ny)ut

A+nB+n| —n)s

— ﬂ\S\—\MI (42)

(Notice the relation[ [, ((a'(s) +k)/B + Kk —1'(s)) = BI"\(k'B + k), for integersj, k
andn € A,.) As a result of these three relations, expression (38) can be rewritten as

S g GBI T T (43)
m A+nB+n, —n)s d, "

where the sum is taken overe A} '
Now we obtain the relation

e o A+nB+n) —n)ur 7, ~
1— ; -n ﬂ—n¢ 1—x,)" B—n|+n,—ny — — | { M K
[Ja-x [Ta-x» >B A

iel, JEl 2

(44)

from expressions (37) and (43). We notice that the right-hand side of (44) is a polynomial
of n'g + n', and hence relation (44) also holds for arbitrary complex values pft n',.
Further we replace-n'g — n' + n, by a complex variable:. Consequently we obtain
binomial formula (33).

3. Hole propagator for the spin CS model

3.1. Result for a finite number of particles

In this section, for arbitrary non-negative integerwe compute exactly the hole propagator
of the SU(2) spin CS model with a finite number of particles.

We consider the ®-particle system whose Hamiltonian is given by (1) wjh= 2.
We assume tha¥ is an odd integer. The hole propagator of the model is given by

G(r, 1) = 2n (O L (. 1)14.(0. 0)[0) 21 /211 (010201 (45)
where |0)2y represents the singlet ground state fav/-particle system. The operator
Yr(r,t) = expliHoy—11)¥4(r) exp(—iHoyt) is the Heisenberg representation of the

annihilation operato%(r) of particles with spin-up which acts on théf2particle states.

In the following, the statistics of particles are chosen as boson (fermion) for odd (even)
B, so that we can seP;; = (—1)ﬁ+1s,-‘,~. (Notice thatP;;s;; is nothing but the particle
exchange operator for a pdit, j).)

Along the lines of the calculations in [13], the hole propagator reduces to the following
expression:

2M -1 . _ B 5
Grrnh=c [] ?{ ) Zi’i“’x AP (x)O(x; B) expl—i(H — E9\)t +iPr]AP (x)O(x; B)
i=1 Ylxil= i

(46)
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where complex coordinates= (xy, ..., x2);_1) are related to original coordinatésin (1)
by the formulaex; = exp(27iX;/L) for 1 < i < 2M — 1. The constant factaf, is given
by po/(2D(M)), in terms of the mean density of particles = 2M /L and

2M ‘
D(M):Hyg dz.’. [T = [ - [ la—gP

o1 JI=1 270202 icoy 1<i<j<M M+1<i<j<aM

M T(@2B+DM+1)

= 47
28+ 1M rB+1M (47)
In (46), the function® (x; B) has the form
2M -1
Ox: p) = H(l—x»ﬂ [T a-x I w-xp []  Gi-x). ©®
i=M+1 1<i<j<M M+1<i<j<2M-1

Furthermore, the symbol&, ED, and P denote the Hamiltonian, the ground-state energy
of 2M-particle system and total momentum, respectively. In terms of the complex variables
x, the expressions fak andP are given by

) o \2 T 2M-1 9 2 2B(B — (—1)Psij)xix;

i=1 ! 1<i<j<2M -1
5 2 2M -1 9
P=" ; <x,~a—xj—AP) (50)
respectively. HereA P denotes(8(2M — 1) + M -1/2. A
Now we introduce a transformed Hamiltoni&hand momentunP as

H=APHAP - EY, (51)

P =AFPPAP, (52)
Using the notations in section 2 with=2M — 1, n, = M, andny, = M — 1, expression
(46) turns into

G(r. 1) = co(©, exp(—iHt +1Pr)©),, ;. (53)

In (53), our problem has reduced to the spectral decompositio® (af 8) in terms
of the joint eigenfunctions of{ and P. From the following two observations, we can
see that the Jack polynomials with the prescribed symmetry are proper bases of the
decomposition. First, botl®(x) and K, (x) are polynomials with a common symmetric
property;s;®(x) = —O(x) ands; K, (x) = =K, (x) fori € I)\{n} or € I}\{n}. Second,
the polynomialsk,, are joint eigenfunctions of{ and P with the eigenvalues

o \22M-1 M1 2
() = (7”) D (/:e,- - +ﬂ> (54)

i=1

27 2M1 BRM — 1)+ M —1
= — ;= 55
9w =" 2 <u > ) (55)
respectively. In the following, we discuss the second issue.
From expression (17), we can see thigi(x) for n € A, andx = (x1,...,x,) iS
an eigenfunction of the operato}s/_, d* with the eigenvalug) /_, 7* for k = 1,...,n

Furthermore, the operatofs)/_, d* for k = 1,...,n commute with permutations e
Sn, % Sy,. In addition, K, can be constructed by a ‘symmetrization’ Bf (see expression
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(22)). Therefore, the Jack polynomials with the prescribed symm¥éfryor o € AV are
eigenfunctions ofy_, d* with the eigenvalu /_, i fork =1, ..., n.

On the other hand, in terms of the Cherednik—Dunkl operators (15), the Hamilthian
and total momentur® can be written as

. o 22M-1 . M—_1 2
#=(T) & (-5 ) 0

i=1

o2 [/ M-—1\ BRM -1
P=T[;<d,-— 5 >+ 5 } (57)

and

These expressions lead to the fact that the joint eigenfunctiods & *d* for k = 1,2
are those of{ andP. From this, we find that the polynomials,, are joint eigenfunctions
of H andP. Eigenvalues (54) and (55) follow from (17), (56) and (57).

We notice that the binomial formula (33) is useful in rewriting (53), because the spectral
decomposition of®(x; B) in terms of K, (x) is a special case of formula (33). Now we
can expres® in terms ofK,, as

OB = Y xu(B+MEK,(x;p) (58)
neAgy_y
with the coefficientsy, (8 + M) (34).
Using the orthogonal properties of the Jack polynomials with the prescribed symmetry
and the spectral decomposition (58), we have

2
0
( K191

G =2 Y OB+ ) expl-iw(wr — gl (59)

ueAﬂFl

(Notice thatKsy a(x) = AxY)AxT) and thenD(M) = ([|Ksw.ml13,,)%.) Every factor
in (59) is available from expressions (29), (34), (54) and (55). Expression (59) is our main
result in this section.

It is important to consider the condition that intermediate statean contribute to the
sum in (59). By a close examination of expression (34), we find the relation

XuB+M)#06 LB+ M) & p'. (60)

This relation leads to a selection rule; only those staiethe largest entry of which is
less thang + M contribute to the sum in (59). Here we remark on the parametrization of
the relevant intermediate state. For a compositioa AL, there is a unigue composition
4= (4Y, i’ € A, such thatuw = i + 8. Notice that® A,'l for s =, 1. Using these
notations, we have

Xu(B+M)#£0& (1, B+1) ¢ pt and 1,B8+2¢p"  (61)

wherefit and/i" are regarded as partitions. In the decompositios /i + 8, § represents
the condensate or the pseudo-Fermi sea@anmdpresents the excitations. From the above
conditions, we see that partitions’ and 4t are parametrized by and g + 1 integers,
respectively. Therefore, the relevant intermediate statean be parametrized bys2+- 1
integers.

An example of those states is shown in figure 1, where we gake2, M = 7, and
nw=1(22110007332210) +8(n, =7n, =6). The open blocks correspond to
8(n, = 7,n4 = 6) and the shaded ones represent the excitations.

0
| K, m) 11224
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'
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, .
: :
i Yoy

! P2
.

ny L]—J 5

ny

; : : Figure 1. A figure that contributes to the hole propagator. This
‘ i (], figure corresponds to the case with= 2, M = 7 andp =

’ (2,2,1,1,0,0,0,3,3,2,2,1,0) + 8(n, = 7,n4 = 6). The open
and shaded blocks represent the pseudo-Fermi sea and the excitation,
respectively. The parametefsy, ¢;} adopted in section 3.2 are also
shown.

A
=

In the next section, we will see that another but equivalent parametrization(Ra¢4)-
fold integral representation fas (r, r) in the thermodynamic limit.

3.2. Thermodynamic limit

In this section, we derive expression (2) for the hole propagator in the thermodynamic
limit. First, to take the thermodynamic limit, we parametrize the intermediate states in
the following way. Letu = (u', u') € A3/, , be a composition which satisfies condition
(60). From the consideration on the intermediate states, the complementary;s,é#@{ in
{M+p-1, M+B-2,...,1,0}is well defined. We defin(apk}k ;sothatpy > --- > pg and
{M+B8-1, M+p-2,...,1, 0}\{H1 M ={M+p-1- pk}k 1 Slmllarly, we deflne{q,}
sothaty; > -+ > gpi1 and{M+ﬂ LM+B—=2, ..., L0\ )M = (M+p—1— ql}ﬁH
The resultant set dfpy, g;} exhausts the relevant |ntermed|ate state in (59). In figure 1, the
new parametergpi, p2, q1, g2, g3} are also shown.

Furthermore we shall introduce a set of notations. We respectively dgfitie £ < 8)
andg(1<I<p+1 by

Pe=pc—vBB—k+8{l' e{l,....8+ Lgr < pr}) (62)
G=q —yBB+1-1+t{ke{d,...,8pe <q}) (63)

wherey = 1/(28 +1). We can regardp, and g, as ‘rapidities’ of quasiholes with
spin-up and spin-down. AlsaA;(1 < k < B) and Al<I < B + 1) are defined as
yBl' € {1,..., B+ 1gr = pr — 1} and Bk’ € {1, ..., BHpw = q1 — 1}, respectlvgly.
Moreover we introducé/y; = py — pr— Ay forl<k <i<BandVy =g —q — A

for 1 <k <1< B+ 1. They describe the interplay between the quasiholes with the same
spin. In order to describe the interaction between the quasiholes with an opposite spin, we
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introduceWy, for 1<k <Band 1</ < B+1as

=G —vB+Dik e{1,....Blipr =q+1} for g; +2 <
Wu=11 forg; < pr <q+1
- +1-yB+D{l" e{1,.... B+ Llgr = pi} for pi <611—1
(64)
and
N for =q; OF p; = 1
A= vB Pk=q Of pr=q + (65)

0 otherwise.

Here Ay, is introduced to describe exceptional configurations of rapidities.
Using these new notations, we can rewrite the norm and matrix element more explicitly.
The expression fog, (8 + M) in the new notation is given by

2p+1
X (B + M) = (— D)Xl 2l o’ H ryo™
k=1
B+1
x ]"[ Py (B+1) — Ay H Ty B+1)—A)
F(Ukz+y<ﬁ+1>> T(Va+y(B+1)
1<k<I<p I'(Un) L<k=I<pi1 (Vi)
B p+1
l—[ l—[ T(Wy + Ay — )/,3)' (66)
171 (W)

The expression for the norm is given by

( 1K ll5y ): PE+DIMEE+D —p) T T +1-yk
|

[K s |19 M T(M2B+1) i T(M+1—yk—yp)

T(y(B+1) — AT (pr + DT (M — py)

LTA-ANL@G +y(B+I)IM — G — yB)
Ty(B+1) —ANT(@G + DI (M — )
% LUy + DT (Uy)
1<ai<p L Wa +y (B + )T Uk + vB)
I'(Vie +DI(Viy)
1<k<I<B+1 FVu+vB+D)I(Vu +vB)

B B+1 X
r r A
» (W) (Wi + ~kz) . (67)

it =1 LW + yB)T (Wi + Ay — vB)

Now we consider the thermodynamic limit, i.84 — oo, L — oo with pg = 2M/L
fixed. In this limit, only the configurations wittpy, ¢;, Ipx — pil, lgx — qi| and
lpr — qil ~ O(M) give finite contributions to the hole propagator. Let us introduce the
normalized velocities;, and v, of the holes with up- and down-spin, respectively. These

E T~ ADT (G +y(B+DIT(M — p — yB)
x H
=1

X
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are defined by

: 2py
gm S =1 @
. 2
lim 2L 1y, (69)
M—oo M

In the thermodynamic limit, we can use the Stirling formulal'(z + 1) —
V21 77t12 exp(—z) for |z| — oo. Taking the symmetry of the integrand into consideration,
the sum in (59) ovefpy, ¢;} reduces to the integral ovén,, v;} as

> ) L () a1
- duk /dv;.
0<pp<-<p1<M+B—10<gp 1< <q1<M+p—1 ﬁ'(lg+1)l 1=17-1

(70)

Combining expressions (59), (66) and (67) with the above limiting procedure, we arrive at
the final expression (2) for the hole propagator in the thermodynamic limit.
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