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Jack polynomials with prescribed symmetry and hole
propagator of spin Calogero–Sutherland model

Yusuke Kato† and Takashi Yamamoto‡
Institut für Theoretische Physik, Universität zu Köln, Zülpicher strasse 77, D-50937, Köln,
Germany
and
Department of Physics, Tohoku University, Sendai 980-77, Japan

Abstract. We study the hole propagator of the Calogero–Sutherland model with SU(2) internal
symmetry. We obtain the exact expression for arbitrary non-negative integer coupling parameter
β and prove the conjecture proposed by one of the authors. Our method is based on the theory
of the Jack polynomials with a prescribed symmetry.

1. Introduction

One of the goals in physics of interacting particle systems is to understand the dynamics. In
particular, dynamical properties in one-dimensional systems are anticipated to be intriguing,
because interaction effects are crucial and naive pictures based on perturbations lose their
validity. As a non-perturbative approach, conformal field theory is a powerful method
with which to study the low-energy physics of the Tomonaga–Luttinger liquid. Beyond the
conformal limit, on the other hand, integrable systems give us opportunities for analytical
study of dynamics. Among them, the Calogero–Sutherland (CS) model [1, 2] of particles
interacting with the two-body inverse square interaction provides the simplest example
of systems with non-trivial dynamics. For the spinless CS model, the density–density
correlation function [3–6], hole propagator [4, 5, 7] and particle propagator [8, 9] have been
obtained analytically.

The spinless CS model has a number of variants. One of them is the spin CS model
[10, 11]. This model describesn particles with coordinatesX = (X1, . . . , Xn) moving
along a circle of lengthL and with a spin withp possible values. The Hamiltonian of the
model is given by

Ĥn = −
n∑
i=1

∂2

∂X2
i

+ 2
(π
L

)2 ∑
16i<j6n

β(β + Pij )
sin2 π

L
(Xi −Xj)

(1)

whereβ is a coupling parameter andPij is the spin-exchange operator. In this paper, we
takeβ to be a non-negative integer.

The spin CS model withp = 2 is particularly relevant to condensed matter physics;
most one-dimensional systems are realized experimentally in electron systems and hence
we should take account of spin degrees of freedom of each particle. Furthermore, we can
regard the spin CS model withp = 2 as a one-dimensional variant of a singlet fractional
quantum Hall (FQH) system; the ground state of (1) can be derived from the Halperin
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wavefunction [12] for the singlet FQH state by the restriction of particle coordinates on a
ring in a two-dimensional plane.

For the dynamics of the spin CS model withp = 2, the expression for the hole part
of Green function has been proposed [13] relying on finite-size calculations. Subsequently
the dynamical density–density and spin–spin correlation functions have been derived by
Uglov [14] in an exact treatment. Since [14] appeared, however, exact derivations of the
hole propagator have still been missing. Recently, in [15], Dunkl has developed the theory
of the Jack polynomials with a prescribed symmetry; those polynomials are symmetric or
alternating with respect to the interchange of certain subsets of variables. Dunkl’s results
allow us to derive ‘the binomial formula’, which is directly related to the matrix element
of the local field operator in the spin CS model.

The aim of this paper is to prove the earlier conjecture on the hole propagator [13]
utilizing Dunkl’s results [15]. Though the method in this paper is also applicable to the
general SU(p) case, we concentrate on the SU(2) case for simplicity.

Here we recall the conjecture in [13] on the hole propagator. In the thermodynamic
limit, the expression for the hole propagatorG(r, t) is expected to be

G(r, t) = c(β)
β∏
k=1

∫ 1

−1
duk

β+1∏
l=1

∫ 1

−1
dvl|F(u, v)|2 exp[−i(E(u, v)t −Q(u, v)r)]. (2)

Here c(β) is a constant factor andu = (u1, . . . , uβ), v = (v1, . . . , vβ+1) represent
normalized velocities of the quasiholes. In the expression (2),F , Q andE represent the
form factor, momentum and energy, respectively. The explicit forms of them are as follows.
The form factorF is given by

F(u, v) =
∏

16k<l6β(uk − ul)gd
∏

16k<l6β+1(vk − vl)gd
∏β

k=1

∏β+1
l=1 (uk − vl)go∏β

k=1(1− u2
k)
(1−gd)/2

∏β+1
l=1 (1− v2

l )
(1−gd)/2

(3)

wheregd = (β+1)/(2β+1) andgo = −β/(2β+1). The momentumQ and energyE are
given, respectively, by

Q(u, v) = πρ0

2

( β∑
k=1

uk +
β+1∑
l=1

vl

)
(4)

E(u, v) = −(2β + 1)(
πρ0

2
)2
( β∑
k=1

u2
k +

β+1∑
l=1

v2
l

)
. (5)

Hereρ0 = 2M/L is the mean density of particles. In what follows, we prove this conjecture
and show that the constantc(β) is given by

c(β) = ρ0

4(2β + 1)β0(β + 2)

2β+1∏
k=1

0((β + 1)/(2β + 1))

0(k/(2β + 1))2
(6)

where0(z) is the gamma function. The physical implication of expressions (2)–(4) has
been discussed in [13, 16].

This paper is organized as follows. In section 2, we define the Jack polynomials with
a prescribed symmetry and discuss their basic properties. In particular, we derive the
binomial formula of the Jack polynomials with the prescribed symmetry using Dunkl’s
results. In section 3, we obtain the hole propagator for a finite number of particles using the
mathematical formulae presented in section 2 and present the derivation of expression (2).
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2. Jack polynomials with prescribed symmetry

In this section, we present mathematical results necessary to derive the expression for the
hole propagator. First, as a preliminary, we fix our notations. Second, we define the
non-symmetric Jack polynomials. Third, we define the Jack polynomials with a prescribed
symmetry in terms of the non-symmetric Jack polynomials. Fourth, we present the basic
formulae of the Jack polynomials with the prescribed symmetry: the norm, Cauchy formula,
and evaluation formula are discussed. Last, from the Cauchy and evaluation formulae, we
derive the binomial formula, which gives the matrix element of the local field operator in
the calculation of the hole propagator.

2.1. Notations

First of all, we fix notations (see [17–19]). For a fixed non-negative integern, let
3n = {η = (η1, η2, . . . , ηn)| ηi ∈ Z>0, 1 6 i 6 n} be the set of all compositions with
length less than or equal ton. The weight|η| of a compositionη = (η1, η2, . . . , ηn) ∈ 3n

is defined by|η| = ∑n
i=1 ηi . The lengthl(η) of η is defined as the number of non-

zero ηi in η. The set of all partitions with length less than or equal ton is defined by
3+n = {λ = (λ1, λ2, . . . , λn) ∈ 3n|λ1 > λ2 > · · · > λn > 0}. The dominance order< on
partitions is defined as follows: forλ, µ ∈ 3+n , λ 6 µ if |λ| = |µ| and

∑k
i=1 λi 6

∑k
i=1µi

for all k = 1, . . . , n. For a compositionη ∈ 3n, we denote byη+ the (unique) partition
which is a rearrangement of the compositionη. Now we define a partial order≺ on
compositions as follows: forν, η ∈ 3n, ν ≺ η if ν+ < η+ with dominance ordering on
partitions or ifν+ = η+ and

∑k
i=1 νi 6

∑k
i=1 ηi for all k = 1, . . . , n.

For a given compositionη = (η1, η2, . . . , ηn) ∈ 3n and pairs of integerss = (i, j)

satisfying 16 i 6 l(η) and 16 j 6 ηi , we define the following quantities:

a(s) = ηi − j (7)

a′(s) = j − 1 (8)

l(s) = #{k ∈ {1, . . . , i − 1}|j 6 ηk + 16 ηi} + #{k ∈ {i + 1, . . . , n}|j 6 ηk 6 ηi} (9)

l′(s) = #{k ∈ {1, . . . , i − 1}|ηk > ηi} + #{k ∈ {i + 1, . . . , n}|ηk > ηi}. (10)

Here, for a setA, #A denotes the number of elements. In the above expressions,a(s), a′(s),
l(s) and l′(s) are called arm-, coarm-, leg-, and coleg-lengths, respectively. Furthermore,
for a compositionη ∈ 3n and a parameterβ, we define the following four quantities:

dη =
∏
s∈η
((a(s)+ 1)/β + l(s)+ 1) (11)

d ′η =
∏
s∈η
((a(s)+ 1)/β + l(s)) (12)

eη =
∏
s∈η
((a′(s)+ 1)/β + n− l′(s)) (13)

e′η =
∏
s∈η
((a′(s)+ 1)/β + n− l′(s)− 1). (14)
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2.2. Non-symmetric Jack polynomials

Now we define the non-symmetric Jack polynomials [20, 21]. For this purpose, we define
the Cherednik–Dunkl operators [22, 23] as

d̂i = xi ∂
∂xi
+ β

i−1∑
k=1

xi

xi − xk (1− sik)+ β
n∑

k=i+1

xk

xi − xk (1− sik)+ β(1− i) (15)

for 16 i 6 n. The operatorsij = (i, j) is the transposition which interchanges coordinates
xi andxj (sij is called the coordinate exchange operator [24]). The operatord̂i is a mapping
in homogeneous polynomials ofx = (x1, . . . , xn). Furthermore, all the operators{d̂i}
commute with each other, and hence these operators can be diagonalized simultaneously.

For a given compositionη, the non-symmetric Jack polynomialEη(x; 1/β) is defined
as the|η|th order homogeneous polynomial satisfying the following two conditions.

(1) The polynomialEη(x; 1/β) has the form of

Eη(x; 1/β) = xη +
∑
ν∈3n
ν≺η

cνηx
ν (16)

in terms of the monomialsxν = xν1
1 , . . . , x

νn
n .

(2) Eη(x; 1/β) is a simultaneous eigenfunction ofd̂i for 16 i 6 n.
Here we remark on two important properties of the non-symmetric Jack polynomialEη.

One is the eigenvalue ofEη for d̂i , which is given by

η̄i = ηi − β(#{k ∈ {1, . . . , i − 1}|ηk > ηi} + #{k ∈ {i + 1, . . . , n}|ηk > ηi}). (17)

The other is the action of the transpositionsi := si,i+1 = (i, i + 1) on Eη [18, 19]

siEη =


ξiEη + (1− ξ2

i )Esiη ηi > ηi+1

Eη ηi = ηi+1

ξiEη + Esiη ηi < ηi+1

(18)

whereξi = β/(η̄i − η̄i+1). In particular, property (18) plays an important role in the proof
of the basic properties of the Jack polynomials with a prescribed symmetry.

2.3. Jack polynomials with prescribed symmetry

Next we define the Jack polynomials with a prescribed symmetry. For this purpose, we
introduce some notations. The intervalI = [1, n] denotes{i ∈ Z|16 i 6 n} for a positive
integern. For an integerm ∈ I , we defineI↓ = [1, m] andI↑ = [m+1, n]. In addition, we
introduce the notationsn↓ = #I↓(= m) andn↑ = #I↑(= n−m). We consider the subgroup
Sn↓ ×Sn↑ of the symmetric groupSn which leaves{1, . . . , n↓} and{n↓+1, . . . , n} invariant.

Further we define3↓↑n ⊂ 3n as a set of ‘partial partitions’

3↓↑n = {µ = (µ↓, µ↑)
= (µ↓1, . . . , µ↓n↓ , µ

↑
1, . . . , µ

↑
n↑) ∈ 3n|µ↓1 > · · · > µ↓n↓ , µ

↑
1 > · · · > µ↑n↑}. (19)

Now we consider polynomials which are alternating under the action ofSn↓ × Sn↑
[15, 25]. We define the (alternating) Jack polynomial with the prescribed symmetry
Kµ(x;β) for µ = (µ↓, µ↑) ∈ 3↓↑n by the following two conditions.

(1) The polynomialKµ has the form of

Kµ(x;β) =
∑

η=(η↓,η↑)
aηEη(x; 1/β) (20)
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with the normalizationaµ = 1. Here the sums overη↓ and η↑ are taken on the whole
rearrangements ofµ↓ andµ↑, respectively.

(2) Under the action of the transpositionsi , the polynomialKµ(x) is transformed as
siKµ(x) = −Kµ(x) for i ∈ I↓ \ {n↓} or ∈ I↑ \ {n}. (Here, for a setA and its subsetB, we
denote byA\B the complementary set ofB in A.)

From the above definition and (18), we can derive the recursion relation for the
coefficientaη

asiη = −
η̄i − η̄i+1− β
η̄i − η̄i+1

aη (21)

wherei ∈ I↓ \ {n↓} or ∈ I↑ \ {n}. From the alternating property ofKµ, we can also write as

ρµKµ(x) =
∑

σ∈Sn↓×Sn↑
sgn(σ )σEµ(x) (22)

where the symbol sgn(σ ) denotes the sign of the permutationσ . The expression for the
factor ρµ can be obtained from the normalizationaµ = 1 and relation (18) as

ρµ =
∏
s=↓,↑

∏
i,j∈Is
i<j

µ̄i − µ̄j − β
µ̄i − µ̄j (23)

for µ ∈ 3↓↑n .

2.4. Basic properties

Next we discuss the basic properties of the Jack polynomials with the prescribed symmetry.
The combinatorial norm, integral norm, Cauchy formula and evaluation formula are
discussed.

(a) Combinatorial norm: define the polynomials{qη(x)}η∈3n by

�(x|y) =
n∏
i=1

(1− xiyi)−1
n∏

i,j=1

(1− xiyj )−β =
∑
η∈3n

qη(x)y
η. (24)

The (combinatorial) inner product〈•, •〉cn is then defined by〈qν, xη〉cn = δνη [26]. The Jack
polynomials with the prescribed symmetry are orthogonal with respect to the inner product
〈•, •〉cn [25]. Using the norm formula(||Eη||cn)2 = 〈Eη,Eη〉cn = d ′η/dη for η ∈ 3n [19] and
the transformation properties (18) of the non-symmetric Jack polynomials, we can prove

(||Kµ||cn)2 = 〈Kµ,Kµ〉cn =
n↓!n↑!
ρµ

d ′µ
dµ

(25)

for µ ∈ 3↓↑n .
(b) Integral norm: for functionsf (x) andg(x) in complex variablesx = (x1, . . . , xn),

we define the inner product〈•, •〉0n by the following formula:

〈f, g〉0n =
n∏
i=1

∮
|xi |=1

dxi
2π ixi

f (x)g(x)|1(x)|2β. (26)

Here1(x) =∏ i,j∈I
i<j
(xi−xj ) is the VanderMonde determinant andg(x) denotes the complex

conjugation ofg(x). The Jack polynomials with the prescribed symmetry are orthogonal
with respect to the inner product〈•, •〉0n [25]. It is known [27] that

〈Eη,Eη〉0n/〈Eη,Eη〉cn =
0(nβ + 1)

0(β + 1)n
eη

e′η
(27)
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for η ∈ 3n. We note that the right-hand side of (27) depends onη throughη+. Thus
relation (27) immediately leads to

〈Kµ,Kµ〉0n/〈Kµ,Kµ〉cn =
0(nβ + 1)

0(β + 1)n
eµ

e′µ
. (28)

As a result of (25) and (28), we obtain

(||Kµ||0n)2 = 〈Kµ,Kµ〉0n =
n↓!n↑!
ρµ

0(nβ + 1)

0(β + 1)n
eµd

′
µ

e′µdµ
(29)

for µ ∈ 3↓↑n .
(c) The Cauchy formula: for the coordinatex = (x1, . . . , xn) and a fixed integerm ∈ I ,

we definex↓ = (x1, . . . , xm) andx↑ = (xm+1, . . . , xn). The Cauchy formula for the Jack
polynomials with the prescribed symmetry is given by∏
s=↓,↑

∏
i,j∈Is

(1− xiyj )−1
∏
i,j∈I

(1− xiyj )−β = n↓!n↑!
∑
µ∈3↓↑n

(||Kµ||cn)−2K̃µ(x)K̃µ(y) (30)

whereK̃µ(x) = Kµ(x)/(1(x↓)1(x↑)) with 1(xs) =
∏

i,j∈Is
i<j

(xi − xj ), (s =↓,↑). The proof

of the Cauchy formula (30) is based on Cauchy’s formula for the non-symmetric polynomials
�(x|y) = ∑η∈3n(||Eη||cn)−2Eη(x)Eη(y) [19] and Cauchy’s determinant identity (see also
[27]). The proof also requires transformation properties (18) and (21) together with those
for dη andd ′η [19].

(d) evaluation formula: using the evaluation formula for the non-symmetric Jack
polynomialsEη(1, . . . ,1︸ ︷︷ ︸

n

) = eη/dη [19] and new skew operators [15], Dunkl obtained

the evaluation formula for the Jack polynomials with the prescribed symmetry†

K̃µ(1, . . . ,1︸ ︷︷ ︸
n

) = β−|δ| 1

eδ

eµ

dµ

πµ

ρµ
(31)

where

πµ =
∏
s=↓,↑

∏
i,j∈Is
i<j

(µ̄i − µ̄j − β) (32)

for µ ∈ 3↓↑n . In (31), the compositionδ ∈ 3↓↑n is introduced asδ = δ(n↓, n↑) := (δ↓, δ↑)
with δ↓ = (n↓ − 1, . . . ,1, 0) andδ↑ = (n↑ − 1, . . . ,1, 0).

2.5. Binomial formula

In this section, we derive the binomial formula with the use of the Cauchy formula (30)
and evaluation formula (31). Fora ∈ C, the binomial formula for the Jack polynomials
with the prescribed symmetry is given by∏

s=↓,↑

∏
i∈Is
(1− xi)a−ns =

∑
µ∈3↓↑n

χµ(a)K̃µ(x) (33)

where

χµ(a) = β−|µ| (1− a)µ
+

(1− a)δ+
πµ

d ′µ
. (34)

† The polynomialEη for a compositionη in this paper is different fromζη in [15] by the constant factord ′η/dη;

Eη = (d ′η/dη)ζη.
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Here, for an indeterminatet , a partitionλ and a parameterβ, the generalized shifted factorial
is defined by

(t)λ =
n∏
i=1

0(t − β(i − 1)+ λi)
0(1− β(i − 1))

. (35)

We can prove the formula (33) in a way similar to that used in lemma 5.2 in [19] and
proposition 2.4 in [27].

Let n′ be n′↓ + n′↑(> n) for that pair (n′↓, n
′
↑) of positive integersn′↓ and n′↑ which

satisfiesn′↓ −n′↑ = n↓ −n↑. We consider the Cauchy formula (30) inn′ variables. First we
discuss the left-hand side; the left-hand side of (30) becomes∏

s=↓,↑

∏
i,j∈I ′s

(1− xiyj )−1
∏
i,j∈I ′

(1− xiyj )−β (36)

with I ′↓ = [1, n′↓], I
′
↑ = [n′↓ + 1, n′] and I ′ = [1, n′]. Now we setxn↓+1 = · · · = xn′↓ = 0,

xn′↓+n↑+1 = · · · = xn′↓+n′↑ = 0 and y1 = · · · = yn′↓+n′↑ = 1. Further we replace
(xn′↓+1, . . . , xn′↓+n↑) by (xn↓+1, . . . , xn↓+n↑). Expression (36) then turns into∏

i∈I↓=[1,n↓]

(1− xi)−n′β−n′↓
∏

j∈I↑=[n↓+1,n]

(1− xj )−n′β−n′↓+n↓−n↑ . (37)

Next we discuss the right-hand side of the Cauchy formula inn′ variables. We set
yi = 1 for 16 i 6 n′. With the use of evaluation formula (31), we immediately see that
the right-hand side of the Cauchy formula becomes∑

ν

β−|δ
′| eνπν
eδ′d ′ν

K̃ν(x). (38)

Here the sum is taken overν ∈ 3↓↑n′ . The symbolδ′ = (δ′↓, δ′↑) denotes the composition
δ(n′↓, n

′
↑) ∈ 3↓↑n′ .

Now we set xn↓+1 = · · · = xn′↓ = 0 and xn′↓+n↑+1 = · · · = xn′↓+n′↑ = 0 in
(38). Non-vanishing contributions the sum in (38) then only come from the compositions
ν = (ν↓, ν↑) ∈ 3↓↑n′ satisfying l(ν↓ − δ′↓) 6 n↓ and l(ν↑ − δ′↑) 6 n↑ whereνs − δ′s =
(νs1−δ′s1 , . . . , νsn′s−δ′sn′s ) ∈ 3

†
n′s

, (s =↓,↑). The reason is as follows. If eitherl(ν↓−δ′↓) > n↓
or l(ν↑ − δ′↑) > n↑ holds for the compositionν = (ν↓, ν↑) ∈ 3↓↑n′ , then, in each monomial
of the polynomialsKν , the minimum power ofxn↓+1 is 1 or that ofxn′↓+n↑+1 is 1. Therefore,
thoseν do not contribute to the sum in (38) when bothxn↓+1 and xn′↓+n↑+1 are set to be
zero.

For a compositionν = (ν↓, ν↑) ∈ 3↓↑n′ satisfyingl(ν↓−δ′↓) 6 n↓ andl(ν↑−δ′↑) 6 n↑,
the compositionµ = (µ↓, µ↑) ∈ 3↓↑n can be defined as the composition satisfying the
relation

µ↓ − δ↓ = ν↓ − δ′↓ and µ↑ − δ↑ = ν↑ − δ′↑. (39)

When relation (39) holds for compositionsµ ∈ 3↓↑n and ν ∈ 3↓↑n′ , we can then find the
following consequences. First, the two polynomials

K̃ν(x1, . . . , xn↓ , 0, . . . ,0︸ ︷︷ ︸
n′↓−n↓

, xn′↓+1, . . . , xn′↓+n↑ , 0, . . . ,0︸ ︷︷ ︸
n′↑−n↑

) (40)

and

K̃µ(x1, . . . , xn↓ , xn′↓+1, . . . , xn′↓+n↑) (41)
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are equal. From now on, we replacexn′↓+1, . . . , xn′↓+n↑ by xn↓+1, . . . , xn. Second,
πν/d

′
ν = β |ν|−|µ|πµ/d ′µ. Third, the expressioneν/eδ′ can be rewritten as∏

s∈ν((a
′(s)+ 1)/β + n′ − l′(s))∏

s∈δ′((a′(s)+ 1)/β + n′ − l′(s)) =
∏
s∈µ((a

′(s)+ n′↓ − n↓ + 1)/β + n′ − l′(s))∏
s∈δ((a′(s)+ n′↓ − n↓ + 1)/β + n′ − l′(s))

= β |δ|−|µ| (1+ n
′β + n′↓ − n↓)µ+

(1+ n′β + n′↓ − n↓)δ+
. (42)

(Notice the relation
∏
s∈η((a

′(s) + k)/β + k′ − l′(s)) = β−|η|(k′β + k)η† for integersj, k
andη ∈ 3n.) As a result of these three relations, expression (38) can be rewritten as∑

µ

β−|µ|
(1+ n′β + n′↓ − n↓)µ+
(1+ n′β + n′↓ − n↓)δ+

πµ

d ′µ
K̃µ(x) (43)

where the sum is taken overµ ∈ 3↓↑n .
Now we obtain the relation∏

i∈I↓
(1− xi)−n′β−n′↓

∏
j∈I↑

(1− xj )−n′β−n′↓+n↓−n↑ =
∑
µ

β−|µ|
(1+ n′β + n′↓ − n↓)µ+
(1+ n′β + n′↓ − n↓)δ+

πµ

d ′µ
K̃µ(x)

(44)

from expressions (37) and (43). We notice that the right-hand side of (44) is a polynomial
of n′β + n′↓ and hence relation (44) also holds for arbitrary complex values ofn′β + n′↓.
Further we replace−n′β − n′↓ + n↓ by a complex variablea. Consequently we obtain
binomial formula (33).

3. Hole propagator for the spin CS model

3.1. Result for a finite number of particles

In this section, for arbitrary non-negative integerβ, we compute exactly the hole propagator
of the SU(2) spin CS model with a finite number of particles.

We consider the 2M-particle system whose Hamiltonian is given by (1) withp = 2.
We assume thatM is an odd integer. The hole propagator of the model is given by

G(r, t) = 2M〈0|ψ̂†↑(r, t)ψ̂↑(0, 0)|0〉2M/2M〈0|0〉2M (45)

where |0〉2M represents the singlet ground state for 2M-particle system. The operator
ψ̂↑(r, t) = exp(iĤ2M−1t)ψ̂↑(r) exp(−iĤ2Mt) is the Heisenberg representation of the
annihilation operator̂ψ↑(r) of particles with spin-up which acts on the 2M-particle states.

In the following, the statistics of particles are chosen as boson (fermion) for odd (even)
β, so that we can setPij = (−1)β+1sij . (Notice thatPij sij is nothing but the particle
exchange operator for a pair(i, j ).)

Along the lines of the calculations in [13], the hole propagator reduces to the following
expression:

G(r, t) = c0

2M−1∏
i=1

∮
|xi |=1

dxi
2π ixi

1̄β(x)2̄(x;β) exp[−i(H̃− E0
2M)t + iP̃r]1β(x)2(x;β)

(46)
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where complex coordinatesx = (x1, . . . , x2M−1) are related to original coordinatesX in (1)
by the formulaexi = exp(2π iXi/L) for 1 6 i 6 2M − 1. The constant factorc0 is given
by ρ0/(2D(M)), in terms of the mean density of particlesρ0 = 2M/L and

D(M) =
2M∏
i=1

∮
|zi |=1

dzi
2π izi

∏
16i<j62M

|zi − zj |2β
∏

16i<j6M
|zi − zj |2

∏
M+16i<j62M

|zi − zj |2

= M!

(2β + 1)M
0((2β + 1)M + 1)

0(β + 1)2M
. (47)

In (46), the function2(x;β) has the form

2(x;β) =
M∏
i=1

(1− xi)β
2M−1∏
i=M+1

(1− xi)β+1
∏

16i<j6M
(xi − xj )

∏
M+16i<j62M−1

(xi − xj ). (48)

Furthermore, the symbols̃H, E0
2M and P̃ denote the Hamiltonian, the ground-state energy

of 2M-particle system and total momentum, respectively. In terms of the complex variables
x, the expressions for̃H and P̃ are given by

H̃ =
(

2π

L

)2 [ 2M−1∑
i=1

(
xi
∂

∂xi
−1P

)2

−
∑

16i<j62M−1

2β(β − (−1)βsij )xixj
(xi − xj )2

]
(49)

P̃ = 2π

L

2M−1∑
i=1

(
xi
∂

∂xi
−1P

)
(50)

respectively. Here1P denotes(β(2M − 1)+M − 1)/2.
Now we introduce a transformed Hamiltonian̂H and momentumP̂ as

Ĥ = 1−βH̃1β − E0
2M (51)

P̂ = 1−βP̃1β. (52)

Using the notations in section 2 withn = 2M − 1, n↓ = M, andn↑ = M − 1, expression
(46) turns into

G(r, t) = c0〈2, exp(−iĤt + iP̂r)2〉02M−1. (53)

In (53), our problem has reduced to the spectral decomposition of2(x;β) in terms
of the joint eigenfunctions ofĤ and P̂. From the following two observations, we can
see that the Jack polynomials with the prescribed symmetry are proper bases of the
decomposition. First, both2(x) andKµ(x) are polynomials with a common symmetric
property;si2(x) = −2(x) and siKµ(x) = −Kµ(x) for i ∈ I↓\{n↓} or ∈ I↑\{n}. Second,
the polynomialsKµ are joint eigenfunctions of̃H and P̃ with the eigenvalues

ω(µ) =
(

2π

L

)2 2M−1∑
i=1

(
µ̄i − M − 1

2
+ β

)2

(54)

q(µ) = 2π

L

2M−1∑
i=1

(
µi − β(2M − 1)+M − 1

2

)
(55)

respectively. In the following, we discuss the second issue.
From expression (17), we can see thatEη(x) for η ∈ 3n and x = (x1, . . . , xn) is

an eigenfunction of the operators
∑n

i=1 d̂
k
i with the eigenvalue

∑n
i=1 η̄

k
i for k = 1, . . . , n.

Furthermore, the operators
∑n

i=1 d̂
k
i for k = 1, . . . , n commute with permutationsσ ∈

Sn↓ × Sn↑ . In addition,Kµ can be constructed by a ‘symmetrization’ ofEµ (see expression
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(22)). Therefore, the Jack polynomials with the prescribed symmetryKµ for µ ∈ 3↓↑n are
eigenfunctions of

∑n
i=1 d̂

k
i with the eigenvalue

∑n
i=1 µ̄

k
i for k = 1, . . . , n.

On the other hand, in terms of the Cherednik–Dunkl operators (15), the HamiltonianĤ
and total momentum̂P can be written as

Ĥ =
(

2π

L

)2 2M−1∑
i=1

(
d̂i − M − 1

2
+ β

)2

(56)

and

P̂ = 2π

L

[ 2M−1∑
i=1

(
d̂i − M − 1

2

)
+ β(2M − 1)

2

]
. (57)

These expressions lead to the fact that the joint eigenfunctions of
∑2M−1

i=1 d̂ki for k = 1, 2
are those ofĤ andP̂. From this, we find that the polynomialsKµ are joint eigenfunctions
of Ĥ and P̂. Eigenvalues (54) and (55) follow from (17), (56) and (57).

We notice that the binomial formula (33) is useful in rewriting (53), because the spectral
decomposition of2(x;β) in terms ofKµ(x) is a special case of formula (33). Now we
can express2 in terms ofKµ as

2(x;β) =
∑

µ∈3↓↑2M−1

χµ(β +M)Kµ(x;β) (58)

with the coefficientsχµ(β +M) (34).
Using the orthogonal properties of the Jack polynomials with the prescribed symmetry

and the spectral decomposition (58), we have

G(r, t) = ρ0

2

∑
µ∈3↓↑2M−1

(χµ(β +M))2
(
||Kµ||02M−1

||Kδ(M,M)||02M

)2

exp[−i(ω(µ)t − q(µ)r)]. (59)

(Notice thatKδ(M,M)(x) = 1(x↓)1(x↑) and thenD(M) = (||Kδ(M,M)||02M)2.) Every factor
in (59) is available from expressions (29), (34), (54) and (55). Expression (59) is our main
result in this section.

It is important to consider the condition that intermediate statesµ can contribute to the
sum in (59). By a close examination of expression (34), we find the relation

χµ(β +M) 6= 0⇔ (1, β +M) /∈ µ+. (60)

This relation leads to a selection rule; only those statesµ the largest entry of which is
less thanβ +M contribute to the sum in (59). Here we remark on the parametrization of
the relevant intermediate state. For a compositionµ ∈ 3↓↑n , there is a unique composition
µ̂ = (µ̂↓, µ̂↑) ∈ 3n such thatµ = µ̂ + δ. Notice thatµ̂s ∈ 3†ns for s =↓,↑. Using these
notations, we have

χµ(β +M) 6= 0⇔ (1, β + 1) /∈ µ̂↓ and (1, β + 2) /∈ µ̂↑ (61)

whereµ̂↓ andµ̂↑ are regarded as partitions. In the decompositionµ = µ̂+ δ, δ represents
the condensate or the pseudo-Fermi sea andµ̂ represents the excitations. From the above
conditions, we see that partitionŝµ↓ and µ̂↑ are parametrized byβ and β + 1 integers,
respectively. Therefore, the relevant intermediate statesµ can be parametrized by 2β + 1
integers.

An example of those states is shown in figure 1, where we takeβ = 2, M = 7, and
µ = (2, 2, 1, 1, 0, 0, 0, 3, 3, 2, 2, 1, 0)+ δ(n↓ = 7, n↑ = 6). The open blocks correspond to
δ(n↓ = 7, n↑ = 6) and the shaded ones represent the excitations.
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Figure 1. A figure that contributes to the hole propagator. This
figure corresponds to the case withβ = 2, M = 7 and µ =
(2, 2, 1, 1, 0, 0, 0, 3, 3, 2, 2, 1, 0) + δ(n↓ = 7, n↑ = 6). The open
and shaded blocks represent the pseudo-Fermi sea and the excitation,
respectively. The parameters{pk, ql} adopted in section 3.2 are also
shown.

In the next section, we will see that another but equivalent parametrization leads(2β+1)-
fold integral representation forG(r, t) in the thermodynamic limit.

3.2. Thermodynamic limit

In this section, we derive expression (2) for the hole propagator in the thermodynamic
limit. First, to take the thermodynamic limit, we parametrize the intermediate states in
the following way. Letµ = (µ↓, µ↑) ∈ 3↓↑2M−1 be a composition which satisfies condition

(60). From the consideration on the intermediate states, the complementary set of{µ↓i }Mi=1 in
{M+β−1,M+β−2, . . . ,1, 0} is well defined. We define{pk}βk=1 so thatp1 > · · · > pβ and
{M+β−1,M+β−2, . . . ,1, 0}\{µ↓i }Mi=1 = {M+β−1−pk}βk=1. Similarly, we define{ql}β+1

l=1

so thatq1 > · · · > qβ+1 and{M+β−1,M+β−2, . . . ,1, 0}\{µ↑i }M−1
i=1 = {M+β−1−ql}β+1

l=1 .
The resultant set of{pk, ql} exhausts the relevant intermediate state in (59). In figure 1, the
new parameters{p1, p2, q1, q2, q3} are also shown.

Furthermore we shall introduce a set of notations. We respectively definep̃k(16 k 6 β)
and q̃l(16 l 6 β + 1) by

p̃k = pk − γβ(β − k + ]{l′ ∈ {1, . . . , β + 1}|ql′ < pk}) (62)

q̃l = ql − γβ(β + 1− l + ]{k′ ∈ {1, . . . , β}|pk′ 6 ql}) (63)

where γ = 1/(2β + 1). We can regardp̃k and q̃l as ‘rapidities’ of quasiholes with
spin-up and spin-down. Also,̄1k(1 6 k 6 β) and 1̂l(1 6 l 6 β + 1) are defined as
γβ]{l′ ∈ {1, . . . , β + 1}|ql′ = pk − 1} andγβ]{k′ ∈ {1, . . . , β}|pk′ = ql − 1}, respectively.
Moreover we introduceUkl = p̃k − p̃l − 1̄l for 1 6 k < l 6 β andVkl = q̃k − q̃l − 1̂l

for 1 6 k < l 6 β + 1. They describe the interplay between the quasiholes with the same
spin. In order to describe the interaction between the quasiholes with an opposite spin, we
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introduceWkl for 16 k 6 β and 16 l 6 β + 1 as

Wkl=


p̃k − q̃l − γ (β + 1)]{k′ ∈ {1, . . . , β}|pk′ = ql + 1} for ql + 26 pk
1 for ql 6 pk 6 ql + 1

q̃l − p̃k + 1− γ (β + 1)]{l′ ∈ {1, . . . , β + 1}|ql′ = pk} for pk 6 ql − 1

(64)

and

1̃kl =
{
γβ for pk = ql or pk = ql + 1

0 otherwise.
(65)

Here1̃kl is introduced to describe exceptional configurations of rapidities.
Using these new notations, we can rewrite the norm and matrix element more explicitly.

The expression forχµ(β +M) in the new notation is given by

χµ(β +M) = (−1)
∑β

k=1 pk+
∑β+1

l=1 ql−β2
2β+1∏
k=1

0(γ k)−1

×
β∏
k=1

0(γ (β + 1)− 1̄k)

β+1∏
l=1

0(γ (β + 1)− 1̂l)

×
∏

16k<l6β

0(Ukl + γ (β + 1))

0(Ukl)

∏
16k<l6β+1

0(Vkl + γ (β + 1))

0(Vkl)

×
β∏
k=1

β+1∏
l=1

0(Wkl + 1̃kl − γβ)
0(Wkl)

. (66)

The expression for the norm is given by(
||Kµ||02M−1

||Kδ(M,M)||02M

)2

= 0(β + 1)

M

0(M(2β + 1)− β)
0(M(2β + 1))

2β+1∏
k=1

0(M + 1− γ k)
0(M + 1− γ k − γβ)

×
β∏
k=1

0(1− 1̄k)0(p̃k + γ (β + 1))0(M − p̃k − γβ)
0(γ (β + 1)− 1̄k)0(p̃k + 1)0(M − p̃k)

×
β+1∏
l=1

0(1− 1̂l)0(q̃l + γ (β + 1))0(M − q̃l − γβ)
0(γ (β + 1)− 1̂l)0(q̃l + 1)0(M − q̃l)

×
∏

16k<l6β

0(Ukl + 1)0(Ukl)

0(Ukl + γ (β + 1))0(Ukl + γβ)

×
∏

16k<l6β+1

0(Vkl + 1)0(Vkl)

0(Vkl + γ (β + 1))0(Vkl + γβ)

×
β∏
k=1

β+1∏
l=1

0(Wkl)0(Wkl + 1̃kl)

0(Wkl + γβ)0(Wkl + 1̃kl − γβ)
. (67)

Now we consider the thermodynamic limit, i.e.,M → ∞, L → ∞ with ρ0 = 2M/L
fixed. In this limit, only the configurations withpk, ql , |pk − pl|, |qk − ql| and
|pk − ql| ∼ O(M) give finite contributions to the hole propagator. Let us introduce the
normalized velocitiesuk and vl of the holes with up- and down-spin, respectively. These
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are defined by

lim
M→∞

2pk
M
= 1− uk (68)

lim
M→∞

2ql
M
= 1− vl. (69)

In the thermodynamic limit, we can use the Stirling formula:0(z + 1) →√
2πzz+1/2 exp(−z) for |z| → ∞. Taking the symmetry of the integrand into consideration,

the sum in (59) over{pk, ql} reduces to the integral over{uk, vl} as∑
06pβ<···<p16M+β−1

∑
06qβ+1<···<q16M+β−1

→ 1

β!(β + 1)!

(
M

2

)2β+1 β∏
k=1

∫ 1

−1
duk

β+1∏
l=1

∫ 1

−1
dvl.

(70)

Combining expressions (59), (66) and (67) with the above limiting procedure, we arrive at
the final expression (2) for the hole propagator in the thermodynamic limit.
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